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Turbulent decay of a passive scalar in the Batchelor limit:
Exact results from a quantum-mechanical approach
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We show that the decay of a passive scalaru advected by a random incompressible flow with zero corre-
lation time in the Batchelor limit can be mapped exactly to a certain quantum-mechanical system with a finite
number of degrees of freedom. The Schro¨dinger equation is derived and its solution is analyzed for the case

where, at the beginning, the scalar has Gaussian statistics with correlation function of the forme2ux2yu2. Any
equal-time correlation function of the scalar can be expressed via the solution to the Schro¨dinger equation in
a closed algebraic form. We find that the scalar is intermittent during its decay and the average ofuuua

~assuming zero mean value ofu! falls ase2gaDt at larget, whereD is a parameter of the flow,ga5
1
4 a(6

2a) for 0,a,3, andga5
9
4 for a>3, independent ofa. @S1063-651X~99!51004-0#

PACS number~s!: 47.27.2i, 03.65.2w
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Kolmogorov theory~K41! @1# remains the cornerstone o
our understanding of fully developed turbulence. This sim
theory predicts a scaling law~the famous Kolmogorov-
Obukhov k25/3 law! of the energy spectrum that is in re
markable agreement with experimental data. Since
1980’s, however, data gathered have consistently pointed
the failure of K41 in predicting the scaling law of high-ord
correlation functions@2,3#. The breakdown of K41 is closely
related to the non-Gaussianity of the distribution of veloc
increments. The phenomenon, dubbed intermittency, has
come one of the central issues of theoretical works on tur
lence. Recently, it has been found that the intermittency o
passive scalar advected by a turbulent flow might be e
stronger than that for the velocity@4#. Such observations
have led to the hope that the study of simple models, suc
the Kraichnan model of scalar advection~see Refs.@5–10#
and below!, may provide clues to understanding the mu
more complex Navier-Stokes intermittency.

In this Rapid Communication, we consider the problem
turbulent decay of a passive scalar. In other words, we w
to find statistical properties of a scalaru satisfying the equa-
tion

] tu1v i] iu5kDu, ~1!

wherek is a small diffusivity,v i is a Gaussian random field
which is white in time,

^v i~ t,x!v j~ t8,y!&5d~ t2t8! f i j ~r !, ~2!

and

f i j ~r !5Vd i j 2DS j12

j
d i j r

j2r j22r i r j D , ~3!

wherer5x2y, andj is some real number. The Kraichna
model usually contains a random external scalar source
the right-hand side~RHS! of Eq. ~1!. Such a source would
make the steady state possible, but since we are interest
the decay, it is assumed that the source is absent. We
PRE 591063-651X/99/59~4!/3811~4!/$15.00
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furthermore, turn our attention to the Batchelor limitj52,
which corresponds to smooth flows with very large veloc
correlation lengths~for comparison, the inertial range of rea
turbulence corresponds toj5 2

3 .) This limit has attracted re-
cent interest due to its good analytical features@11,12#.

Our result is that the scalar becomes more and more
termittent during the decay. Specifically, we found that t
average of̂ uf(x)ua&, wherea is an arbitrary positive num-
ber, decays ase2gaDt at asymptotically larget, wherega
5 1

4 a(62a) if a,3, andga5 9
4 when a>3. The flatness

^u4&/^u2&;e7Dt/4 goes to` as t grows. This is in sharp
contrast with the steady-state case, where the scalar stat
is largely Gaussian@12#.

To attack the problem, we will reduce it to a certain pro
lem of quantum mechanics, which can then be solved~for
another attempt to apply quantum mechanics to turbulen
see@13#.! We first note that the probability distribution func
tional of the scalar, which will be denotedC@ t,u#, can be
expressed in term of a path integral@14#

C@ t,u#5E Dp~ t,x!Du~ t,x!Dv i~ t,x!r@v#

3expF i E dt dx p~] tu1v i] iu2kDu!G , ~4!

where the Gaussian measure for the velocityr@v# is chosen
to satisfy Eq.~2!. The auxiliary variablep enforces Eq.~1!.
Integrating overv, one obtains

C~ t,u!5E Dp Du expF i E dx p] tu

2 1
2 E dt dx dy p~ t,x!] iu~ t,x!

3 f i j ~x2y!p~ t,y!] ju~ t,y!2 ikE dx pDu G .

R3811 ©1999 The American Physical Society
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The path integral describes the evolution in Euclidean ti
of a quantum field theory with the Hamiltonian@15#

H5 1
2 E dx dy p~x!] iu~x! f i j ~x2y!p~y!] ju~y!

1 ikE dx pDu, ~5!

whereu and p are conjugate variables satisfying the usu
commutation relation@u(x),p(y)#5 id(x2y). The operator
ordering in Eq.~5! corresponds to the physical regularizati
of the path integral~4!. The evolution of the distribution
functionalC@u# is described by the Euclidean version of t
Schrödinger equation,] tC52HC. Note that the functiona
C itself, not its square, determines the probability distrib
tion of u. The average of, e.g.,uuua is defined aŝ uuua&
5*DuuuuaC@u#. In further discussion, we will use th
quantum-mechanical terminology, so the terms ‘‘probabi
distribution functional’’ ~PDF! and ‘‘wave function’’ are
used interchangeably.

In the Batchelor limit~3!, the Hamiltonian can be simpli
fied considerably. We will concentrate our attention on
homogeneous case, i.e., when the system is invariant u
spatial translations. In the quantum language, this means
we restrict ourselves to the statesuC& having zero total mo-
mentum,Pi uC&50, wherePi5*dx p(x)] iu(x) @16#. With
this restriction, the Hamiltonian~5! can be rewritten in the
following form:

H5
D

2
~4Li j Li j 2Lii L j j 2Li j L ji !1 ikDii , ~6!

where the operatorsLi j andDi j are defined as

Li j 5E dx xip~x!] ju~x!, Di j 5E dx p~x!] i] ju~x!.

It is straightforward to check thatLi j and Di j form a
closed algebra with the commutation relations,

@Li j ,Lkl#5 i ~d jkLil 2d l i Lk j!,

@Li j ,Dkl#52 i ~d i l D jk1d ikD jl !, ~7!

@Di j ,Dkl#50.

The fact that the algebra is closed implies that the system
actually one with a finite number of degrees of freedom. T
quantum field theory thus degenerates to quantum mec
ics. Notice that theLi j form a closed subalgebra. Indee
they are the operators of linear coordinate transformations
fact, only the SL~3,R! generators enter into the Hamiltonia
~6! ~cf. @10#.! H is invariant under the SO~3! algebra formed
by the antisymmetric part ofLi j .

In principle, the Schro¨dinger equation withH defined in
Eq. ~6! can be solved~at least numerically.! In this paper, we
will choose a representation of the algebra~7! whereH has a
relatively simple form, but the physics is nontrivial. O
choice is inspired by the observation by Townsend@17# that
a Gaussian-shaped hot spot preserves its Gaussianity
advected by Batchelor-limit velocity flow~for a somewhat
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similar discussion without quantum mechanics, see@18#.! Let
us for a moment concentrate on the states in whichu has
Gaussian statistics. This corresponds to the wave funct
of the form C@u#;exp(21

2u K21 u), where K(x2y)
5^u(x)u(y)&. We will further restrict ourselves to function
K that have the Gaussian shape,K(x2y);exp@21

2bij(x
2y)i(x2y)j#. More strictly, we require that, in Fourier com
ponents, the spectrum ofu has the form

^u* ~k!u~k8!&5u0 expS 2
1

2
ai j kikj D d~k2k8!,

whereu0 is a constant independent ofai j 5(bi j )
21 ~one can

chooseu051.) Denote such states asuai j &. The group ele-
ments act onuai j & as follows:

e2 ib i j Li j uai j &5ue2ba~e2b!T& if b i i 50,
~8!

e2 ib i j Di j uai j &5uai j 14b i j &.

We now choose our representation to be the one acting
the subspace of the Hilbert space that contains all linear c
binations ofuai j & ~although the latter do not form an orthogo
nal basis.! A vector in this subspace is characterized by t
function c(ai j ), which is the coefficient of the expansio
uC&5*dai j c(ai j )uai j &. In general, the scalar statistics
uC& is not Gaussian. The operatorsLi j andDi j can be written
as first-order differential operators with respect toai j , and
the Schro¨dinger equation becomes a second-order PDE oc.

Moreover, if the initial condition is isotropic, i.e., invari
ant under SO~3! rotations e i jkL jk , the wave function de-
pends only on the eigenvalues of the matrixai j , not on the
Eulerian angles characterizing the orientation of the eig
vectors. The wave function is now a function of three va
ables,c(u1 ,u2 ,u3), where we have denoted the eigenvalu
of ai j ase2ui. We rescalec so that the stateuC& is expressed
via c(u) as

uC&5E dui dU c~u!ua~u,U !&, ~9!

where a(u,U)5U diag(e2ui)U21, U belongs to SO~3!, and
the integration overU is performed using the invariant mea
sure on the SO~3! group manifold.

The Schro¨dinger equationc(u) can then be derived~de-
tails are found in@19#!. It has the form

] tc5D~]1
21]2

21]3
22]1]22]2]32]3]1!c

2(
i 51

3

@3D] i~ f ic!12k] i~e22uic!#, ~10!

where] i[]/]ui ,

f 1[ f ~u1 ;u2 ,u3!5
e4u12e2~u21u3!

~e2u12e2u2!~e2u12e2u3!
,

~11!
f 2[ f ~u2 ;u3 ,u1!, f 3[ f ~u3 ;u1 ,u2!.

Special caution is required when twoui are equal to each
other; however, this will not affect our subsequent disc
sion.
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To fully define the problem, the initial condition ofc(u)
is needed. One can take as the initial state the vectoruai j &,
whereai j 5diag(1,1,1). This corresponds to a scalar that
Gaussian statistics, zero mean value, and the correla
function ^u(x)u(0)& proportional toe2x2/2 at t50. The cor-
relation length ofu is taken to be of order 1. In terms ofc,
the initial condition isc(t50,u)5d(u1)d(u2)d(u3).

Equation~10! can be interpreted in an intuitive way b
using a three-dimensional random walk that has the Fok
Planck equation coinciding with Eq.~10! @20#,

u̇i53D f i12ke22ui1j i , ~12!

wherej i are white noises that correlate as follows:

j11j21j350,

^j1~ t !j1~ t8!&5^j2~ t !j2~ t8!&5^j3~ t !j3~ t8!&52Dd~ t2t8!,
~13!

^j1~ t !j2~ t8!&5^j2~ t !j3~ t8!&5^j3~ t !j1~ t8!&

52Dd~ t2t8!.

Let us discuss the physical meaning of Eq.~12!. A point
(u1 ,u2 ,u3) corresponds to the configuration ofu having the
spectrum ^uu(k)u2&;exp(2 1

2(e2uiki
2). In the configuration

space,u is approximately constant inside an ellipsoid wi
major axes proportional toeui. When advected by the flow
this ellipsoid is subjected to random linear transformatio
If the only transformations of the ellipsoids are those t
stretch or compress the ellipsoid in the directions of its ma
axes, the results would beu̇i5j i , where j i are random.
Equation~13! reflects the conservation of the volume of t
ellipsoid during random stretching and compressing. Ho
ever, the ellipsoid may be subjected to stretching or co
pressing in directions other than the major axes, as well a
shearing. These effects are accounted for by the term 3D f i
on the RHS of Eq.~12!. The incompressibility is not vio-
lated, due to the identityf 11 f 21 f 350. The terms 2ke22ui

are not important unless one major axis of the ellipsoid is
small as the diffusion scale. In the latter case, diffus
smears out the scalar and causes it to be correlated at a l
distance. This is exactly the effect of the 2ke22ui terms in
the Langevin equation. Due to the sign of these terms,
volume of the ellipsoid and, hence, alsou11u21u3 , always
grows during the random walk.

Since any correlation function can be computed foruai j &,
where the scalar statistics is Gaussian, one can find any
relation function with respect touC& if one knows the solu-
tion to Eq. ~10! ~e.g., from numerical integration.! For ex-
ample, the average ofuuua (a.0) over the stateua(u,U)& is
proportional toe2a(u11u21u3)/2; therefore, its average with
respect touC& is

^uuua&5Ca^u2~ t50!&a/2E du c~u!

3expF2
a

2
~u11u21u3!G ,

whereCa5p21/22a/2G@(a11)/2#. This relation is exact.
s
on

r-

.
t
r

-
-
to

s
n
ger

e

or-

Whenk is small, the exponential behavior of^uuua& can
be found analytically. This can be done by using the pa
integral description of the random walk~12! and finding the
saddle-point trajectories that dominateuuua @19#. In this
Rapid Communication, we use a heuristic, yet more physi
method to find the large time behavior of^uuua&.

Let us assume that after letting the system~12! evolve for
a while, the values ofu1 , u2 , andu3 become widely sepa
rated. We assumeu1,u2,u3 , and wide separation mean
u22u1@1, u32u2@1. From Eq.~11! one sees immediately
that in this regime;f 1521, f 250, andf 351 ~in fact, these
asymptotic values off i are related to the Lyapunov expo
nents, see, e.g., Ref.@21#!.

Let us first ignore the term proportional to diffusivity i
Eq. ~12!. The velocityu̇i has two contributions: one fromf i
and another from the noisej i . The first contribution implies
that the mean values ofui drift with constant velocities,
u1(t)523Dt, u2(t)50, andu3(t)53Dt, while the noises
makeui fluctuate around these mean values. The condit
of wide separation ofu’s is satisfied whent@D21. The
advection, on average, compresses a fluid element in
direction by a factor ofe3Dt and stretches it in another direc
tion by the same factor. The remaining third direction is n
substantially compressed or stretched. In this regime, the
fusion is still not operative, and̂uuua& remains constant.

At t5(6D)21 ln k21 (@D21 if k is very small!, the mean
value ofu1 becomes1

2 ln k. The termke22u1 in the Lange-
vin equation~12! cannot be ignored anymore. Physicall
regions of differentu have been brought this close togeth
so that diffusion is no longer negligible. Let us consider t
equation for u1 , u̇1523D12ke22u11j1 , near umin
51

2 ln k. The first term on the RHS pushesu1 toward smaller
values, while the second term preventsu1 from becoming
substantially smaller thanumin . The variableu1 thus fluctu-
ates aroundumin . Therefore, the random walk becomes e
fectively two dimensional:

u̇25j2 , u̇353D1j3 ,

^j2~ t !j2~ t8!&5^j3~ t !j3~ t8!&52Dd~ t2t8!, ~14!

^j2~ t !j3~ t8!&52Dd~ t2t8!.

Additionally, it is required thatu21u3 not decrease with
time, due to the previously found fact thatu11u21u3 can
only increase~if u21u3 decreases, this means thatu1 steps
away from the valueu15umin .) Now there is a possibility
for uuua to decay, since it is proportional toe2a(u11u21u3)/2,
but u11u21u3 is no longer a constant. Assuming that th
random walk~14! starts atu25u2

0 andu35u3
0, the distribu-

tion of u2 andu3 at large times is Gaussian:

r~u2 ,u3!;expH 2
1

3Dt
@~u22u2

0!21~u32u3
023Dt !2

1~u22u2
0!~u32u3

023Dt !#J . ~15!

The mean value ofuuua can be computed by taking
the average ofe2a(u21u3)/2 over the distribution ~15!.
Consider the case of 0,a<3 first. The integral
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*du2 du3 r(u2 ,u3)e2a(u21u3)/2 is dominated by the region
nearu22u2

052 1
2 a Dt, u32u3

05(32a/2)Dt. The value of
the average is proportional toe2gaDt, where ga5 1

4 a(6
2a).

Note that the region where the integral is saturated hau2

decreasing with time,u25u2
02 1

2 a Dt. Eventually,u2 will
become as small asumin , and the termke22u2 in the Lange-
vin equation becomes important. Now, bothu1 andu2 fluc-
tuate aroundumin . However, as we will explain, the expo
nential decay law does not change. Indeed, whenu1 andu2
remain approximately constant, the evolution ofu3 is de-
scribed by the one-dimensional random walk,

u̇353D1j3 , ^j3~ t !j3~ t8!&52Dd~ t2t8!.

The distribution ofu3 is now r(u3);exp@2(4Dt)21(u32u3
0

23Dt)2#. Taking the average ofe2au3/2 ~which is propor-
tional to ^uuua& sinceu1 andu2 are constant!, one finds that
the decay law is stille2gaDt, wherega5 1

4 a(62a).
For the particular casea52, our result can be checke

against the calculations based on the exact evolution e
tion for the scalar spectrum@5#. This comparison has bee
done; the results indeed agree.

When a.3, the solution u2;2 1
2 a Dt, u3;(3

2a/2)Dt is no longer realizable, since it has decreasingu2
1u3 . The average ofuuua is then determined by the edge
the distribution function, i.e., byu2;2 3

2 Dt and u3; 3
2 Dt,

or, after u2 reachesumin , u2'umin and u3;const. The ex-
pectation value decays ase29Dt/4. The reason the decay law
does not containa is the following: whena>3, the main
contribution touuua comes from the realizations in the stati
tical ensemble whereu is unaffected by diffusion~i.e., the
.
5

,

Ib

s.
a-

ellipsoid in which u is approximately constant has nev
been too thin during its evolution.! The averagê uuua& is
thus determined by the probability of such realization
which depends only on characteristics of the flow but not
a. This probability, as has been found, falls ase29Dt/4. This
implies, in particular, that the flatness^u4&/^u2& grows as
t7/4, meaning that the scalar becomes more and more in
mittent during its decay.

More careful analysis shows that the decay lawe2gaDt

that we have found is valid only at large enought. At inter-
mediatet, there is a smooth transition from̂uuua&5const to
^uuua&;e2gaDt @19#. The full analysis does not change th
long-time tail of ^uuua&.

In conclusion, we have shown that by mapping to qua
tum mechanics, the problem of turbulent decay of a r
domly advected scalar in the Batchelor limit can be ma
completely solvable. The power of the approach describe
this paper is not limited to the calculations of^uuua&; analo-
gous calculations can be done for any equal-time correla
function. For example, the long-time tail of^u]xuua& is also
e2gaDt with the samega . The situation here is not similar to
the steady state, where the scalar and its derivatives h
very different statistics, with the scalar being largely Gau
ian and its derivatives being intermittent@12#. The relevance
of the techniques presented and results to the general p
lem of intermittency is yet to be explored.
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